
Q-Learning for Speed

Kelton Busby
busbykt@mail.uc.edu

Abstract

In this report, Q-Learning is used to maximize velocity and minimize driver fatigue
in a human powered vehicle attempting a land speed record. Q-Learning results
in a set of Q-values for state-action pairs, called a policy. That policy is utilized
here to provide a function of power input over time for a given driver, vehicle, and
environment combination that maximizes velocity for the driver’s fatigue limit.
This function of power input over time results in higher achievable speeds than
other methods of developing a power over time function.

1 Problem Background

A yearly competition to break a human powered land speed record takes place in Battle Mountain,
NV. Competitors attempt to accelerate their vehicle over a 5 mile stretch of flat road towards a 200
meter section where their time is recorded, and a speed is calculated. The record for that speed as of
March 2021, is 89.59 miles per hour.

http://ihpva.org/hpvarecl.htm#nom01

To reach high speeds the driver must manage fatigue while accelerating. Maximizing velocity while
minimizing fatigue ensures that as much energy as possible is available to the driver to reach a
highest possible speed. So how should one go about managing fatigue? The driver’s only control
is how much power to input to the pedals. Input power is a combination of force on the pedals and
cadence or revolutions per minute (RPM). The result of this input is accumulation of fatigue, and
acceleration of the vehicle. To maximize velocity, the driver must gain velocity while minimizing
fatigue accumulation. As velocity increases, the driver must input more power to accelerate, which
increases fatigue. The optimal policy of power input over time is sought using Q-Learning.

2 Governing Physics

Most vehicles attempting this record are lightweight aerodynamic shells that roll on bicycle-like
wheels, pedaled by a person in a recumbent position. A vehicle rolling on flat ground requires power
to overcome rolling resistance, aerodynamic drag, and accelerate. The power applied to overcome
those resistances and accelerate is reduced by mechanical losses within the drivetrain of the vehicle.
The power equation is:

Ptotal =
PR + PD + PA

η
Where PR is power to overcome rolling resistance, PD is power to overcome aerodynamic drag, PA

is power to accelerate, and η is drivetrain efficiency. Each power on the right hand side can be broken
down further into its constituent parts:

PR = vmgCrr PD = 1
2ρv

3ACD PA = vma

Resulting in:

Ptotal =
v(mgCrr +

1
2ρv

2ACD +ma)

η

http://ihpva.org/hpvarecl.htm#nom01

Where v is velocity, m is mass, g is acceleration due to gravity, Crr is coefficient of rolling
resistance. ρ is air density A is vehicle frontal area, CD is vehicle drag coefficient, and a is
acceleration. All units are SI units. The power it takes to maintain any velocity v (set a = 0) can
be solved for, given that the vehicle,environment, and driver properties CD, Crr, m, g,and ρ are
known. See Appendix A - Solving the Power Equation for an example. In this application the
power equation is used to solve for acceleration a at discretized time steps where current veloc-
ity is known. See Appendix A - Acceleration Rearrangement for the rearranged acceleration equation.

In addition to calculating the accumulation of velocity over time, a fatigue model has been
built to approximate the available energy a driver has remaining to propel the vehicle. Fatigue F
accumulates as a function of power p and duration of that power input t, according to the following
equation:

F =
t

Tmax(p)

A Tmax curve represents a relationship between power, and the maximum duration a driver can main-
tain that power. An example curve can be found in Appendix A - Fatigue Curve. The fatigue model
assumes constant accumulation of fatigue. If a driver can maintain a 400 watt input for 100 seconds
and reach full fatigue F = 100%, 10 seconds of 400 watt input accumulates F = 10% or 10% fatigue.

Finally, there is the calculation of Coefficient of rolling resistance Crr. In this case, it is
assumed to be solely a function of velocity v and can be found via the function reproduced in
Appendix A - Rolling Resistance.

3 Q-Learning Implementation

Q-Learning is a reinforcement learning algorithm used to assign expected values to state-action pairs.
A Q-learned agent always selects the action that maximizes expected value at every state. This final
set of state-action selections is called a policy. The goal in this application of Q-learning is to generate
a driver, environment, and vehicle specific policy starting at 0 velocity v and 0 fatigue F . The learned
policy should maximize velocity while not exceeding a F = 100% fatigue threshold. for specifics
about the Q-learning algorithm see Appendix B - Q-Learning Algorithm. The primary features of
Q-learning in this application are the state space, action space, and environment.

3.1 State, Action, Environment

A state is comprised of a velocity v and fatigue F pair. This ensures that all relevant information
needed to calculate a reward (Reward = velocity

fatigue+1) is encoded. Further, this simple state definition
keeps the problem size manageable.

The action space is any power p to be input by the driver for the duration of the next time
step. The state and action space must be discretized in such a way to balance accuracy of the
simulation, while maintaining a tractable problem size.

The environment is the set of factors that govern the simulation results, and are constant
throughout the simulation runs. The driver has cycling capability, and weight. The vehicle has
weight, frontal area, and drag coefficient. And the external environment has gravity and air density.
These are all components of the simulation environment.

3.2 Training the Agent

With a selection of environment variables, simulations are run to find an optimal policy given the
environment. Each simulation starts at state space (0v, 0F) where v is velocity and F is fatigue. The
agent chooses an action based on two factors the hyper-parameter ε which determines how often the
agent takes a random action, and the q-value of the available state-action pairs. If the agent does not
act randomly, it chooses the action with the maximum q-value. From here the simulation follows
these steps:

2

• If the current state fatigue F is equal to or greater than 1, the simulation stops.

• Given the action, the next velocity state and fatigue are calculated, see appendix B - Next
Velocity, Next Fatigue.

• The Environment steps ts seconds in time.

• Reward is calculated and the q-value of the previous state is updated.

• The current state (v0,F0) becomes the next state (v1,F1)

Q-values are maintained between simulations, each simulation continues to update Q-values.

4 Results

Results from applying Q-Learning to maximize velocity and minimize driver fatigue in a human
powered vehicle are explored below. The environment, Q-learning hyper-parameters, and simulation
setup are found in Appendix C - Setup.

250 simulations were run, where the agent gradually increases velocity and fatigue from
starting state (0v,0F) to some state (vn,1F), after n time-steps by selecting an action at each step.
The total duration of each simulation was not constant due to the variability in fatigue accumulation
by way of action selection. The top 10 fastest runs actions over time are reproduced below: All

Figure 1: Top 10 training runs 10 second mean smoothed actions over time

simulations increase power over time and incur fatigue for doing so. The top 10 simulations follow
similar paths increasing power gradually to maximize velocity while minimizing fatigue. This
behavior is attributed to the reward function that incentivizes velocity gain for minimal fatigue
increase at every time step. As velocity increases, the power required to continue to accelerate
increases, and the fatigue accumulates faster. Discussion about the orange and brown simulations
visualized above follows in appendix C - Discretization and Time Step.

Ultimately, highly optimized power-input over time functions are achievable via the Q-Learning
process. See the result of a 250 iteration Q-learned agent below. The learned policy resulted in a
maximum velocity of 70.4 miles per hour. The Q-learned agent outperformed constant actions over
time, ramp functions over time, and outperformed human selected actions over time consistently. See

3

table below figure 2. Due to the cubic relationship between power to overcome aerodynamic drag
and velocity, increasing the maximum speed of the vehicle just one or two miles per hour could
require herculean power inputs.

Figure 2: Rolling 25 second smoothed Q-learned agent actions over time

Agent Max Velocity Achieved (mph)
Constant 800w 46.2
Constant 700w 48.0
Constant 300w 55.6
Constant 500w 58.9
Constant 450w 60.8
Constant 375w 61.8
Constant 400w 62.0

Ramp 0-500w (a = .5watt
second) 65.6

Ramp 0-700w (a = 1watt
second) 65.9

Human (manual) 67.6
Q-Agent 70.4

5 Discussion

Q-learning appears to be a useful tool for gauging speed achievable in a human powered vehicle. With
the ability to set driver, vehicle, and environment variables for the conditions, the tool is flexible in its
application. A necessary next step would be to validate the fatigue model, and test the power profiles
to determine if a rider of a given weight and capability can perform the power input over duration
policy. Further, making the problem larger (by discretizing fatigue,velocity, and power with smaller
steps) and running more simulations might provide even faster runs, or at least conclude smoother
more more reasonable actions over time. One extension of this work is to optimize multi-driver
vehicle configurations, the action space would then include multiple drivers power inputs over time,
this would increase the problem size, and would require more simulations to find a "best" solution.
The Q-Learning process could explore very interesting combinations of power by 2 or more drivers.

4

References

[1] Wilson, D. G., & Schmidt, T. (2020). Bicycling science (4th ed.). Cambridge, MA: MIT
press.

[2] Johnstone, D. (2018, June 7). How does your cycling power output compare? Retrieved 2021,
from https://www.cyclinganalytics.com/blog/2018/06/how-does-your-cycling-power-output-compare

[3] Morrison, A. (2010, March 20). AFM tire testing rev9. Retrieved 2021, from
http://www.biketechreview.com/tires_old/images/AFM_tire_testing_rev9.pdf

5

6 Appendix A - Governing Physics

6.1 Solving the power equation

An example set of variable values:

Mass m 100kg
Gravitational Acceleration g 9.81m

s2

Air Density ρ 1.25 kg
m3

Vehicle Frontal Area A 0.4m2

Drag Coefficient CD 0.1
Drivetrain Efficiency η 0.97

Acceleration a 0m
s2

velocity v 17m
s

Coefficient of Rolling Resistance Crr 0.007

Plugging the variables in:

Ptotal =
17(100 ∗ 9.81 ∗ .007 + 1

2 ∗ 1.2517
2 ∗ .4 ∗ .1 + 100 ∗ 0)

.97

Ptotal ≈ 240watts

6.2 Acceleration Rearrangement

Rearranging the power equation for acceleration:

a =
vmg ∗ Crr +

1
2ρv

3ACD − ηPtotal

−vm

6

6.3 Fatigue Curve

Figure 3: 80kg driver fatigue curves

7

6.4 Rolling Resistance

Figure 4: Crr as a function of velocity

8

7 Appendix B - Q-Learning

7.1 Q-Learning Algorithm

The Q-Learning algorithm is implemented exactly as prescribed in literature.

• Given a current state, take an action according to randomness or maximum Q-value
• Calculate reward and discount times maximum Q-value of next state-action pairs.
• Update Q-value of current state action pair

The Q-Learning update incorporated is as follows:
Qn+1(s, a)← (1− α)Q(s, a) + α[Reward(s, a, s′) + γmax

a‘
Qn(s, a)]

7.2 Next Velocity, Next Fatigue

Next velocity is the velocity of the vehicle at the next time step after taking an action at the current
time step. It is calculated using the power equation and is implemented in code here:

def next_velocity(time_delta, current_velocity,
power_in, vehicle, density=1.07):

PR=Pr(v=current_velocity, m=vehicle.mass,
Cr=Crr(current_velocity), eta=vehicle.eta)

PD=Pd(p=density,v=current_velocity,A=vehicle.A,
Cd=vehicle.CD, eta=vehicle.eta)

PA = (power_in - PR - PD)*vehicle.eta
A = PA/(vehicle.mass*current_velocity)
NV = current_velocity+A*time_delta
return NV

def Pd(p,v,A,Cd,eta=.96):
’’’Calculate power to overcome aerodynamic drag.’’’
return .5*p*v**3*A*Cd/eta

def Pr(v,m,Cr,eta=.96):
’’’Calculate power to overcome rolling resistance’’’
return v*m*9.81*Cr/eta

def Pa(v,m,a,eta=.96):
’’’Calculate power to accelerate.’’’
return v*m*a/eta

crr = [.0035,.0039,.005,.0056,.0061,.0063,.0065,.0067,.0069,.0071,.0072]
vs = [0,2,8,12,18,22,27,33,39,46,50]

crr_df = pd.DataFrame(crr, index=vs, columns=[’Crr’])
crr_df = crr_df.reindex(np.arange(0,50.01,.01)).interpolate(’pchip’)
Crr = interp1d(crr_df.index, crr_df[’Crr’])

Next fatigue is calculated by summing current fatigue with the accumulation of fatigue over the next
time step given a power input. Next fatigue is implemented in code here:

def fatigue(action,t0,t1,fatigue_curve):

ts=t1-t0

return ts/fatigue_curve(action)

Note that the fatigue curve is rider dependent. Some are shown in Appendix A - Fatigue Curve

9

8 Appendix C - Results

8.1 Setup

Alpha (learning rate) α .5
Gamma (discount) γ .1

Epsilon (random action rate) ε .25
Number of Simulations n 250

Time Step ts .5s
driver Mass mr 80kg

driver Percentile Rp 80%
Vehicle Mass m 20kg

Gravitational Acceleration g 9.81m
s2

Air Density ρ 1.07 kg
m3

Vehicle Frontal Area A 0.325m2

Drag Coefficient CD 0.0496
Drivetrain Efficiency η 0.97
Starting Acceleration a 0m

s2

Starting Velocity v 0m
s

Starting Fatigue F 0m
s

Coefficient of Rolling Resistance Crr See Fig 4.

8.2 Discretization and Time Step

Figure 5: Top 10 learning runs fatigue over time

Notice in figure 5 (above) and 6 (on the next page), the orange and brown simulations resort to
around 350 watt power inputs for an extended duration while fatigue remains constant. This is a
result of time step and discretization selections. Given a small enough time step, and a broad enough
fatigue discretization, the accumulation of fatigue over the course of the time-step is insufficient to
round to the next highest fatigue level. This results in fatigue remaining constant over the time step,
which is very rewarding to the agent at high enough velocities. Eventually the agent reaches a point
where the given power neither increases fatigue or velocity enough to move up one discretized level.
The agent is then incentivized to increase power. One method to mitigate this issue, is to discretize
fatigue into more states, at the expense of increased problem size. An alternative mitigation, is to

10

Figure 6: 10 second mean smoothed actions over time

change reward from:

Reward =
velocity

fatigue+ 1

to:
Reward =

acceleration

fatigue+ 1

Incentivizing acceleration ensures that the the agent seeks to continually increase speed, and penalizes
constant velocity, unlike the prior reward function. With this reward adjustment, the top 10 learning
runs can be found on the next page.

11

Figure 7: 10 second mean smoothed actions with acceleration reward function

12

	Problem Background
	Governing Physics
	Q-Learning Implementation
	State, Action, Environment
	Training the Agent

	Results
	Discussion
	Appendix A - Governing Physics
	Solving the power equation
	Acceleration Rearrangement
	Fatigue Curve
	Rolling Resistance

	Appendix B - Q-Learning
	Q-Learning Algorithm
	Next Velocity, Next Fatigue

	Appendix C - Results
	Setup
	Discretization and Time Step

