
Physical Simulation Optimization using Q-Learning

Kelton Busby
busbykt@mail.uc.edu

Abstract

In this paper a reinforcement learning algorithm called Q-Learning is applied
to maximize velocity and minimize driver fatigue in a human powered vehicle
attempting a land speed record. Q-Learning results in a set of Q-values for state-
action pairs, called a policy. That policy is a function of power input over time
for a given driver, vehicle, and environment combination that maximizes velocity
for the driver’s fatigue limit. This function of power input over time results in
higher achievable speeds than other methods of developing a power over time
function. Several extensions of the Q-Learning algorithm are explored, along with
a multi-driver vehicle simulation result.

1 Problem Background

A yearly competition to break a human powered land speed record takes place in Battle Mountain,
Nevada. Competitors attempt to accelerate their vehicle over a 5 mile stretch of road towards a 200
meter section where their speed is calculated. The record for that speed as of May 2021, is 89.59
miles per hour [IHPVA 5]. To reach high speeds the driver must manage fatigue while accelerating.
Minimizing fatigue ensures that as much energy as possible is available to the driver to reach a
maximum possible speed. So how should one go about managing fatigue? The driver’s only control
is how much power to input to the pedals. Input power is a combination of force on the pedals and
cadence or revolutions per minute (RPM). The result of this input is accumulation of fatigue, and
acceleration of the vehicle. As velocity increases, the driver must input more power to accelerate,
overcome air drag, and overcome rolling resistance, which increases fatigue. The optimal policy of
power input over time is sought using Q-Learning.

The initial Q-Learning algorithm was developed in [Busby 4]. This algorithm was limited by:

• An incomplete physics model.
• A sub-optimal reward function.
• A single driver limit.

Improving the algorithm and simulation in these three ways is the focus of this paper.

2 Governing Physics - Improving the physics Model

Most vehicles attempting human powered land speed records are lightweight aerodynamic shells that
roll on bicycle wheels, pedaled by a person in a recumbent position. A vehicle rolling on the ground
requires power to overcome rolling resistance, aerodynamic drag, climb a slope if it exists, and
accelerate. The power applied to overcome those resistances and accelerate is reduced by mechanical
losses within the drivetrain of the vehicle. The power equation is:

Ptotal =
PR + PD + PC + PA

η

Where PR is power to overcome rolling resistance, PD is power to overcome aerodynamic drag, PC

is power to climb, PA is power to accelerate, and η is drivetrain efficiency. Each power on the right
hand side can be broken down further into its constituent parts:

PR = vmgCrr PD = 1
2ρv

3ACD PC = vmg ∗ sin(arctan(s)) PA = vma

Resulting in:

Ptotal =
v(mg(Crr + sin(arctan(s)) + 1

2ρv
2ACD +ma)

η

Where v is velocity, m is mass, g is acceleration due to gravity, Crr is coefficient of rolling
resistance. ρ is air density A is vehicle frontal area, CD is vehicle drag coefficient, s is slope, and
a is acceleration. All units are SI units. The power it takes to maintain any velocity v (set a = 0)
can be solved for, given that the vehicle, environment, and driver properties CD, Crr, s, m, g,and ρ
are known. In this application the power equation is used to solve for acceleration a at discretized
time steps where current velocity and road slope are known. The power equation described above
improves the previous physical simulation equation by adding the climbing component PC . Previous
simulations were assumed to be on perfectly level courses. Given knowledge about a course, one can
further optimize their maximum velocity by accounting for road gradient/slope s. While land speed
record tests are on a flat course, more complex courses can be simulated knowing grade.

In addition to calculating the accumulation of velocity over time, a fatigue model is used to
approximate the available energy a driver has remaining to propel the vehicle. Fatigue F accumulates
as a function of power p and duration of that power input t, according to the following equation:

F =
t

Tmax(p)

A Tmax curve represents a relationship between power, and the maximum duration a driver can
maintain that power. An example set of curves can be found in Appendix A - Fatigue Curve and on
page 50 of [Wilson 1]. The fatigue model assumes constant accumulation of fatigue. If a driver can
maintain a 400 watt input for 100 seconds and reach full fatigue F = 100%, 10 seconds of 400 watt
input accumulates F = 10% or 10% fatigue.

Finally, there is the calculation of Coefficient of rolling resistance Crr. In this case, it is
assumed to be solely a function of velocity v and can be found via the function reproduced in
Appendix A - Rolling Resistance.

3 Q-Learning - Improvements

The goal in this application of Q-learning is to generate a driver, environment, and vehicle specific
policy starting at 0 velocity v and 0 fatigue F . The learned policy should maximize velocity while
not exceeding a F = 100% fatigue threshold. for specifics about the Q-learning algorithm see
Appendix B - Q-Learning Algorithm. The primary features of Q-learning in this application are the
state space, action space, and environment. See Appendix B - State, Action Space, and Environment
for definitions. The Q-Learning algorithm developed in [Busby 4] is modified in two significant ways.
First the reward function is modified to incentivize acceleration instead of velocity, and the random
action rate ε is no longer constant, but is a function of iteration number in training.

3.1 Training the Agent

With a selection of environment variables, simulations are run to find an optimal policy given the
environment. Each simulation starts at state space (0v, 0F) where v is velocity and F is fatigue. The
agent chooses an action based on two factors the hyper-parameter ε which determines how often the
agent takes a random action, and the q-value of the available state-action pairs. If the agent does not
act randomly, it chooses the action with the maximum q-value. From here the simulation follows
these steps:

2

Figure 1: Old reward function training set power over time

• If the current state fatigue F is equal to or greater than 1, corresponding to a fully fatigued
driver, the simulation stops.

• Given an action, the next velocity state and fatigue are calculated, see appendix B - Next
Velocity, Next Fatigue.

• The Environment steps ts seconds in time.

• Reward is calculated and the q-value of the previous state is updated.

• The current state (vn,Fn) becomes the next state (vn+1,Fn+1)

In [Busby 4], the reward function was Reward = velocity
fatigue+1 . With broad discretizations of time,

fatigue, and velocity, this occasionally resulted in round-off error that extended the training unrealisti-
cally, and sub-optimally. It is possible to fix this with a very fine discretization of timestep, fatigue,
and velocity, but at the expense of enormous computational cost for the Q-learning algorithm. Instead,
the problem has been resolved with an updated reward function that reduces the training time while
improving the resulting policy. The new reward function Reward = acceleration

fatigue+0.0001 incentivizes
continued increases in velocity, where the old had the potential to get "stuck" choosing low power
inputs for increases in fatigue that rounded-off to 0 for small timesteps. See figure 1 orange and
brown iterations that extended an order of magnitude or more in time beyond the other iterations.
Note the improvement in top 10 fastest training runs between figure 1 and 2.

The algorithm was further updated to include a linearly decaying random-action rate ε. Where

ε = .8 ∗max(n− i
n

, 0) + .1

This formula corresponds to a linearly decreasing likelihood of a random action as training progresses.
Starting from 90% each iteration drops the likelihood of a random action being taken until the final
simulation has a 10% chance of taking a random action at each state.

3.2 Adding a Second Driver

A second driver requires a more complex simulation environment. The simulation Q-states must
track both riders power inputs and fatigue levels. A simplistic approximation of this more complex

3

Figure 2: New reward function training set power over time

environment is to double the power input from a single rider. This allows the simulation to retain
the single driver computational complexity, but does make the assumption that both riders input
equal power at all times. This also assumes that both riders have similar cycling capability as a
function of their weight, See Appendix A - Fatigue Curve. A second driver also requires new vehicle
characteristics (frontal area and drag coefficient) to fit an additional rider. The characteristics can be
determined via CFD simulation. See Appendix D - Tandem Vehicle Definition and Setup.

4 Results

Three limitations to the Q-Learning algorithm and simulation outlined in [Busby 4] were proposed to
address at the beginning of this paper:

• An incomplete physics model.

• A sub-optimal reward function.

• A single driver limit.

The improved physics model allows for road gradient to be considered when optimizing a power-input
plan for a given driver and vehicle combination. While this does not effect the flat course for the
IHPVA event in Nevada, it does allow for accurate simulation of a more varied course.
The reward function adjustment to seek the greatest acceleration to fatigue ratio instead of velocity
to fatigue ratio allows for accurate and fast simulations, even with coarse discretizations of time,
velocity, and fatigue. This is an improvement on the older velocity-rewarded model. See section 3.1 -
Training the agent.
The addition of a second driver was achieved with a slight modification to the single driver simulation
and changed setup parameters to accommodate the vehicle and driver characteristics. See the results
of the top 10 training runs on the next page.

Figure 3 shows the top ten training runs (as measured by maximum velocity achieved) after 1000
iterations of Q-Learning. Each color represents the power input of each driver over time as they
accelerate towards a top speed. The numbers associated with each color is the iteration n. As expected,
the top runs are towards at the end of the training effort (n almost 1000) after the reinforcement agent
has learned about the environment.

4

Figure 3: Rolling 10 second mean agent actions over time

Figure 4: Rolling 10 second mean vehicle velocity over time

Figure 4 shows the same training runs as figure 3, but on axes of velocity over time. Notice how the
velocity ramps up quickly, as the power to overcome aerodynamic drag and rolling resistance is low,
but as the simulations continue, the acceleration slows dramatically. This is expected behavior, as the
algorithm searches for the most fatigue-efficient power for the driver to apply that still accelerates the
vehicle.

5

Figure 5: Rolling 10 second mean driver’s fatigue over time

In figure 5, again the same training iterations are shown, but on axes of fatigue over time.The fastest
runs all wait until fatigue is absolutely necessary to accumulate to continue accelerating the vehicle.
The crescendo to a top speed is an incredibly careful pursuit at the highest speeds. Marginal increases
in rolling resistance or aerodynamic drag can make the pursuit of a human powered land speed record
implausible.

5 Discussion

From the perspective of improving the Q-Learning algorithm and simulation, this exploration has
been a success. The ability to simulate optimal power-over-time profiles for individualized rider and
environment conditions is a useful tool both in vehicle design and use. The tandem rider exploration
has not yet reached its potential. First, the current algorithm only allows for a tandem simulation
of two equally capable riders that take equal action at every step. Adding the ability to simulate
individually acting riders increase the size of the Q-Learning state space enough to make the training
time impractically long on a modern laptop. Regarding the potential to break the current human
powered land speed record, an extremely capable rider (or two) and a carefully designed vehicle are
the key. The tool developed in [Busby 4] and extended here allow iterating preliminary design and
human-capability testing well before a massive investment in building and testing in the real world.
The results of a final simulation assuming two 95th percentile cyclists in a tandem NACA 662015
vehicle is shown in appendix E - 95th Percentile Tandem Results.

6

References

[1] Wilson, D. G., & Schmidt, T. (2020). Bicycling science (4th ed.). Cambridge, MA: MIT
press.

[2] Johnstone, D. (2018, June 7). How does your cycling power output compare? Retrieved 2021,
from https://www.cyclinganalytics.com/blog/2018/06/how-does-your-cycling-power-output-compare

[3] Morrison, A. (2010, March 20). AFM tire testing rev9. Retrieved 2021, from
http://www.biketechreview.com/tires_old/images/AFM_tire_testing_rev9.pdf

[4] Busby, K. (2021, March 23) Q-Learning for Speed. Retrieved 2021, from kb.shoelace.biz/wp-
content/uploads/2021/03/Q-Learning-for-Speed.pdf

[5] “IHPVA - International Human Powered Vehicle Association.” Retrieved 2021, from Ihpva.org,
ihpva.org/hpvarecl.htmnom01

[6] Ira Herbert Abbott, and Von Doenhoff. Theory of Wing Sections. 2nd ed., Dover Pubns., 60,
1959.

7

6 Appendix A - Governing Physics

6.1 Fatigue Curve

Figure 6: 80kg driver fatigue curves

8

6.2 Rolling Resistance

Figure 7: Crr as a function of velocity

9

7 Appendix B - Q-Learning

7.1 Q-Learning Algorithm

The Q-Learning algorithm is implemented exactly as prescribed in literature.

• Given a current state, take an action according to randomness or maximum Q-value.
• Calculate reward and discount times maximum Q-value of next state-action pairs.
• Update Q-value of current state action pair.

The Q-Learning update incorporated is as follows:

Qn+1(s, a)← (1− α)Q(s, a) + α[Reward(s, a, s′) + γmax
a‘

Qn(s, a)]

where s is state, a is action, s′ is next state and a′ is next action.

7.2 State, Action, Environment

A state s is comprised of a velocity v and fatigue F pair. This ensures that all relevant information
needed to calculate a reward (Reward = acceleration

fatigue+0.0001) is encoded. Further, this simple state
definition keeps the problem size manageable.

The action a space is any power p to be input by the driver for the duration of the next
time step. The state and action space must be discretized in such a way to balance accuracy of the
simulation, while maintaining a tractable problem size.

The environment is the set of factors that govern the simulation results, and are constant
throughout the simulation runs. The driver has cycling capability, and weight. The vehicle has
weight, frontal area, and drag coefficient. And the external environment has gravity and air density.
These are all components of the simulation environment.

7.3 Next Velocity, Next Fatigue

Next velocity is the velocity of the vehicle at the next time step after taking an action at the current
time step. It is calculated using the power equation and is implemented in code here:

def next_velocity(time_delta, current_velocity, power_in, vehicle,
slope, density=1.225):

power to roll
PR = Pr(v=current_velocity, m=vehicle.mass, Cr=Crr(current_velocity),

eta=vehicle.eta)
power to overcome drag
PD = Pd(p=density,v=current_velocity,A=vehicle.A, Cd=vehicle.CD,

eta=vehicle.eta)
power to climb
PC = Pc(v=current_velocity, m=vehicle.mass, s=slope, eta=vehicle.eta)
power to accelerate
PA = (power_in - PR - PD - PC)*vehicle.eta
A = PA/(vehicle.mass*current_velocity)
NV = current_velocity+A*time_delta
return NV, PA, PD, PR, PC

def Pd(p,v,A,Cd,eta=.96):
’’’Calculate power to overcome aerodynamic drag.’’’
return .5*p*v**3*A*Cd/eta

def Pr(v,m,Cr,eta=.96):
’’’Calculate power to overcome rolling resistance’’’

10

return v*m*9.81*Cr/eta

def Pc(v,m,s,eta=.96):
’’’Calculate power to climb a grade(slope).’’’
return v*m*9.81*np.sin(np.arctan(s))/eta

def Pa(v,m,a,eta=.96):
’’’Calculate power to accelerate.’’’
return v*m*a/eta

crr = [.0035,.0039,.005,.0056,.0061,.0063,.0065,.0067,.0069,.0071,.0072]
vs = [0,2,8,12,18,22,27,33,39,46,50]

crr_df = pd.DataFrame(crr, index=vs, columns=[’Crr’])
crr_df = crr_df.reindex(np.arange(0,50.01,.01)).interpolate(’pchip’)
Crr = interp1d(crr_df.index, crr_df[’Crr’])

Next fatigue is calculated by summing current fatigue with the accumulation of fatigue over the next
time step given a power input. Next fatigue is implemented in code here:

def fatigue(action,t0,t1,fatigue_curve):

ts=t1-t0

return ts/fatigue_curve(action)

Note that the fatigue curve is rider dependent. Some are shown in Appendix A - Fatigue Curve

11

8 Appendix C - Results

8.1 Original Setup

Alpha (learning rate) α .5
Gamma (discount) γ .1

Epsilon (random action rate) ε .25
Number of Simulations n 250

Time Step ts .5s
driver Mass mr 80kg

driver Percentile Rp 80%
Vehicle Mass m 20kg

Gravitational Acceleration g 9.81m
s2

Air Density ρ 1.07 kg
m3

Vehicle Frontal Area A 0.325m2

Drag Coefficient CD 0.0496
Drivetrain Efficiency η 0.97
Starting Acceleration a 0m

s2

Starting Velocity v 0m
s

Starting Fatigue F 0m
s

Coefficient of Rolling Resistance Crr See Fig 4.

8.2 Improved Setup Adjustments

Epsilon (random action rate) ε .8 ∗max(n−in , 0) + .1

12

9 Appendix D - Tandem Vehicle Definition and Setup

The tandem vehicle characteristics should minimize drag, while allowing for enough room within the
vehicle to house two equally sized cyclists (178cm tall, 80kg). The vehicle outer profile simulated
here is a NACA 662015 symmetric airfoil [Abbott 6] rotated around its longitudinal axis to make
a volume. This liberally approximates a tandem vehicle, albeit without the additional drag from
wheel wells or other protrusions like a forward facing camera. The 662015 foil was chosen due to its
favorable lift and drag characteristics at 0 degrees angle of attack, along with its thickness at 15% of
the chord length being suitable for drivers to fit into the vehicle. The vehicle frontal area is calculated

Figure 8: The NACA 662015 symmetric volume

by knowing that the thickness is 15% of the chord length of 166.7 inches, or 25 inches in diameter.
The frontal area is circular, with a maximum radius of 12.5 inches. Therefore the frontal area A is
0.317m2. Assuming that the wheel wells and other necessary protrusions will increase the frontal
area, a more conservative estimate to simulate is 0.35 m2.

The drag coefficient is determined by performing an external flow CFD simulation on the
volume. The simulation ran with free stream velocity of 60 mph along the longitudinal axis (x) of the
volume and a fluid density of 1.225 kg

m3 , resulting in a force on the vehicle of 9.22N . The vehicle
drag coefficient is calculated from the following formula:

Fd =
1

2
ρv2ACd

Where Fd is drag force, ρ is air density, v is velocity, A is frontal area, and Cd is drag coefficient.
Solving for drag coefficient:

9 =
1

2
1.225(26.82242)(.31)Cd

Cd = .064

The following is the tandem simulation setup:

13

Alpha (learning rate) α .5
Gamma (discount) γ .1

Epsilon (random action rate) ε .8 ∗max(n−in , 0) + .1
Number of Simulations n 1000

Time Step ts .5s
Driver Total Mass mr 160kg

Driver Capability Percentile Rp 80%
Vehicle Mass m 35kg

Gravitational Acceleration g 9.81m
s2

Air Density ρ 1.07 kg
m3

Vehicle Frontal Area A 0.35m2

Drag Coefficient CD 0.064
Drivetrain Efficiency η 0.94
Starting Acceleration a 0m

s2

Starting Velocity v 0m
s

Starting Fatigue F 0m
s

Coefficient of Rolling Resistance Crr See Fig 4.

Notice adjustments in driver and vehicle mass, drag coefficient, and drivetrain efficiency when
compared to the single driver setup.

14

10 Appendix E - 95th Percentile Tandem Results

Simulation setup for two 95th percentile riders in a tandem NACA 662015 symmetric airfoil volume
vehicle:

Alpha (learning rate) α .5
Gamma (discount) γ .1

Epsilon (random action rate) ε .8 ∗max(n−in , 0) + .1
Number of Simulations n 1000

Time Step ts .5s
Driver Total Mass mr 180kg

Driver Capability Percentile Rp 95%
Vehicle Mass m 35kg

Gravitational Acceleration g 9.81m
s2

Air Density ρ 1.07 kg
m3

Vehicle Frontal Area A 0.35m2

Drag Coefficient CD 0.064
Drivetrain Efficiency η 0.94
Starting Acceleration a 0m

s2

Starting Velocity v 0m
s

Starting Fatigue F 0m
s

Coefficient of Rolling Resistance Crr See Fig 4.

This resulted in a final Q-learned agent top speed of 79.22 mph.

15

	Problem Background
	Governing Physics - Improving the physics Model
	Q-Learning - Improvements
	Training the Agent
	Adding a Second Driver

	Results
	Discussion
	Appendix A - Governing Physics
	Fatigue Curve
	Rolling Resistance

	Appendix B - Q-Learning
	Q-Learning Algorithm
	State, Action, Environment
	Next Velocity, Next Fatigue

	Appendix C - Results
	Original Setup
	Improved Setup Adjustments

	Appendix D - Tandem Vehicle Definition and Setup
	Appendix E - 95th Percentile Tandem Results

